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Percolation of Chains and Jamming Coverage in Two 
Dimensions by Computer Simulation 
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A computer simulation model is used to study the percolation of random chains 
with a self-avoiding constraint. The percolation threshold is found to decay with 
the chain length L~ with a power law L, -~ while the jamming coverage varies 
as L ,71/3. 
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Inhomogeneous  fractals are relevant to understanding many processes 
involving spatial growth and temporal  evolution from small-scale (i.e., 
materials growth) to large-scale geological and astronomical phenomena 
such as secondary methods of oil recovery, crack propagation,  galactic 
cluster formation, etc. ~-51 In particular, percolation has been an area of 
acrtive research because of its applications to the problems of fluid flow 
through porous media t~ and sedimentation. Site and bond percolation 
have been extensively studied, and have been successful in improving our  
understanding of the permeability of sediments. I~ In some sediments, such 
as sandstone, the basic structure is composed of single grains of sand which 
are modeled quite well using site and bond percolation. Other  sediments, 
such as clay, have a flat, platelike structure which is not well suited to 
modeling via site and bond percolation because the mechanisms of site and 
bond percolation cannot describe the different conformations which clay 
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particles are known to acquire. These conformations are known to be 
correlated to the sedimentation processes which lead to a percolating 
porous medium. Consideration of random chains as the percolating units 
would be a natural extension of site, bond, and rod 161 techniques in order 
to study the effect of conformation on the percolation. 

Drory et al/7~ studied the percolation threshold of permeable objects 
of various shapes in continuum space. They found that the percolation 
threshold depends strongly on the sizes and shapes. In a previous paper t6~ 
we investigated the percolation of stiff chains (sticks or thin rods) of various 
sizes in a two-dimensional discrete lattice and found a strong dependence 
of the percolation threshold on the chain length. Here we extend this study 
to random chain percolation and jamming coverage in two-dimensional 
lattices. 

We consider a square lattice and constrained random chains with self- 
avoiding-walk-like (SAW) conformations aas the percolating units. In 
contrast to a rigid rod of fixed length L,. as a percolating unit where Lc sites 
are connected in a linear fashion, we consider a random chain generated on 
the trail of a random walk of Lc steps with a self-avoiding constraint as a 
percolating unit. Thus, the length of a chain L,. is the number of connected 
sites on the lattice; L,. = 1 corresponds to the standard site percolation. For 
a fixed chain length L,., we generate clusters of connected chains in the 
following way. We select an empty site and the decision to place a chain 
beginning at this site is determined with a probability p using a pseudo- 
random number generator. If the random number is less than or equal to 
p, then we attempt to generate a constrained SAW-like chain of length L,.. 
The chain is then placed if no occupied lattice site is in the way (i.e., two 
chains are not allowed to share a lattice site). If our attempt to place a 
random chain fails, then we move to the next empty site and repeat the 
above process. This process of selecting an empty site with probability p 
and an attempt to place is repeated for all lattice sites. The consequence of 
this rule is that a jamming concentration limit pj is reached when it is not 
possible to place additional chains in the lattice. 

A cluster is formed by joining the nearest neighbor occupied sites. 
Thus, two neighboring chains will be part of the same cluster if they are 
separated by one lattice constant. We concentrate on the percolation quan- 
tities such as the cluster size distribution, percolation probability, and the 
second moment of the cluster size distribution. The jamming coverage is 
the maximum percolation probability for the chain length L,., where L,. is 
larger than one. 

Initially the simulations were carried out on a CRAY YMP8 machine. 
The lack of floating point computations and the small amount of vector 
code in the algorithm proved to be an inefficient program on the CRAY. 
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A more efficient solution was to distribute the applications across eight 
Silicon Graphics Indigo workstations using the PVM software package. 18~ 
The parallelization was done at the coarsest level of granularity in that 
each workstation independently performed calculations for 50 realizations 
and then the results were collected and averaged to produce the final 
average. In a typical computation we used 400 independent realizations for 
monodispersed chains of a fixed length for each concentration in order to 
evaluate the percolation quantities. The CRAY required approximately 
30 min of a single CPU to perform the computation on a 1000 x 1000 lat- 
tice at a single concentration. The Silicon Graphics/PVM solution required 
about 1 hr elapsed time with each workstation contributing about 45 min 
of CPU time to perform the 50 realizations..Clearly this is not typical of 
all programs, only programs without floating point calculations or vector 
code and laaving coarse granularity should expect this type of performance. 

A typical plot of the percolation probability P versus concentration p 
is shown in Fig. IA; for comparison we present a similar plot for the 
rod/stick percolation. ~61 Note that the dispersity in the variation of the 
percolation threshold with the chain length is slightly smaller in chain per- 
colation (Fig. 1A) than in the rod percolation (Fig. 1B); this is due to the 
fact that the percolation threshold for the chain percolation is lower than 
that for the rod percolation of the same length. We have also studied the 
second moment of the cluster size distribution, i.e., the "susceptibility," an 
analog of magnetic systems, to estimate p,.. However, the variation of the 
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percolation threshold Pc with the chain length Lc shows a power-law decay 
Pc ~ L [  ~ as shown in Fig. 2, which differs from the power law found for 
rod percolation, where p,. ~ L,7 ~/2.(6) 

As we have mentioned above, we define the jamming coverage pj as 
the saturated percolation probability where the chains are jammed. The 
saturated coverage decreases on increasing the chain length. Figure 3 shows 
such a power-law decay of the jamming coverage with the chain length, i.e., 
P j ~  L [  ~/3 (the slope is -0.278).  This agrees with the power law found for 
the jamming coverage in rod percolation (Pj~L~-I/3; slope is -0.277). 
Numerous studies have been carried out in recent years on the random 
sequential adsorption where the power-law approach to the asymptotic 
value of the satured coverage in the long-time ( t ~  oo) regime and its 
dependence on the aspect ratios and shape of the deposited species have 
emphasized.(9 16) In the random sequential absorption of unoriented rec- 
tangles of an aspect ratio of ~, Vigil and Ziff have found that the jamming 
coverage has a maximum at c t=2 and varies as e( -~ as c (~  oo. ( ~ )  We 
point out that the percolation of chains in our model is different from that 
of Bradley et al. (17) 

It is tempting to mention that our simulation may have some applica- 
tion in understanding the variation of the critical density of alkanes with 
the carbon number. (~8'~9) The alkanes are short-chain molecules, and the 
chain (of length Lc) of our simulation may be a good approximation for 
modeling the conformation of normal alkanes with carbon units of the 
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Table I. Percolation Exponents for Various Chain Lengths" 

L ,. p ~ fl ), v D 

3 0.40 0.20 1.3 0.83 1.8 
3 (rod) 0.37 0.14 1.9 1.3 1.9 
5 0.35 0.22 1.3 0.88 1.8 
5 (rod) 0.29 0.14 2.0 1.3 1.9 

10 0.33 0.16 1.7 0.99 1.8 
10 (rod) 0.24 0.14 2.2 1.3 1.9 
20 0.33 0.14 1.6 0.93 1.9 
20 (rod) 0.13 0.14 2.4 1.3 1.9 

Included for comparison are the percolation exponents from percolating rods for various 
chain lengths from ref. 6. 

order of 5-20. Our  simulation is done on a square lattice without consider- 
ing the realistic interactions and energetics of the thermodynamics;  there- 
fore, it is not  possible to compare these results qualitatively with both 
experimental data ~19~ or thermal Monte Carlo data. ttsl However, the decay 
of the critical concentrat ion and the jamming coverage with the chain 
length has qualitative similarity with the decay of critical density of the 
normal alkanes with the carbon number  (see Fig. 4 of ref. 18). Thus the 
conformation and the length of alkanes ~2~ may be important  in under- 
standing their packing and phase equilibria. 

We have estimated the exponents fl, 7, and v for the percolation prob- 
ability, second moment  of the cluster size distribution, and the correlation 
length, respectively, for the percolation phase transition for various chain 
lengths; these values are presented in Table I. We have used D = d - f l / v  to 
evaluate the fractal dimension D of the percolating cluster at the percola- 
tion threshold ( d =  2). The variation in the value of the exponents with the 
chain length suggests that there are considerable fluctuations in these 
estimates. Within the limits of the fluctuations we find that these exponents 
are not different from their corresponding estimates for the rod percolation. 

In summary,  we have studied the percolation of the constrained SAW- 
like chains in a random sequential adsorption. The percolation threshold 
decays with the chain length as L, -~176 and the jamming coverage as L,- 1/3 
The type of chain (rod or flexible) does seem to affect the power laws for 
the percolation threshold, while it does not affect the power laws for the 
jamming coverage. 
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